STATE LEVEL ENVIRONMENT IMPACT ASSESSMENT AUTHORITY

SEAC- 2014/CR-85/TC-2 Environment department Room No. 217, 2nd floor, Mantralaya Annex, Mumbai- 400 032. Dated: 04 June, 2016.

To, M/s. Clean Science & Technology Pvt. Ltd. 503, 5th floor, Pentagao i Tower 4, Magarpatta City, Hadadear, Pune- 411 013.

Subject: Environment clearance for expansion of existing Synthetic organic chemical plant from 5418MTA to 10550MTA at D28 MIDC Kurkumbh, Daund, Pune by M/s. Clean Science & Technology Pvt ltd.

Sir,

This has reference to your communication on the above mentioned subject. The proposal was considered as per the EIA Notification, 2006, by the State Level Expert Appraisal Committee-I, Maharashtra in its 105th meeting and decided to recommend the project for prior environmental clearance to SEIAA. Information submitted by you has been considered by State Level Environment Impact Assessment Authority in its 89th & 96th meeting.

2. It is noted that the proposal is considered by SEAC-I under screening category 5(f) B1 as per EIA Notification 2006.

Brief Information of the project submitted by Project Proponent is as:

ופ	iei imormation of the project sui	omitted by Project Proponent is as:
passer	Name of the Project	M/s. Clean Science & Technology Pvt. Ltd. Expansion of Existing Synthetic Organic Chemical Plant at D-28, MIDC Kurkumbh, Tehsil Daund, District Pune, Maharashtra.
2	Project Proponent	Mr. Siddharth Ashok Sikchi.
3	Consultant	SMS Envocare Ltd.
4	Accreditation of consultant (NABET Accreditation)	QCI-NABET Accreditation For Sector 3,21,32, 36, 38
5	New Project / Expansion in existing project/ Modernization/ Diversification in exiting project	Expansion

6	If expansion/ Diversification, whether environmental clearance has been obtained for existing project (If yes, enclose a copy with compliance table)	NA As the Production capacity was not exceeding as per EIA Notification, 2006								
7	Activity schedule in the EIA Notification	Category 'B' Project Activity No. 5(f)								
8	Area Details	Exis by M Prop Exis Tota Area	Total area in possession: 30,000 sq. m. Existing Built Up Area: 12,450.08 Sq. m. (As per BCC by MIDC. Letter No. DE/KUR/PA/B53205/ of 2014) Proposed Built Up Area: 4,478.93 Sq. m. (Within Existing Area) Total built-up area: 16,929.01 Sq. m. Area available for green belt: 8,520 sq. m.							
9	Name of the Notified Industrial area / MIDC area	1	3, Kurkumbh arashtra.	MIDC, Tehsil Dau	ınd, Distri	ct Pune,				
01	TOR given by SEAC? (If yeas then specify the mc sting)		i SEAC-I Me No. 11	eting dated 22nd I	Dec.2014					
		S. No	Fixed Assets Land &	Existing Amount (Rs in Lakhs)	Propo sed Amou nt (Rs in Lakhs	Total Cost in Lakhs				
	Estimated against cost of the	1	Land developme nt Building/P	36,47	70.00	106.47				
11	Estimated capital cost of the Project (including cost for land,	2	remises	971.37	0	1371.37				
1 1	building, plant and machinery separately)	3	Plant & Machinery /Equipmen t	3,447.15	1,800. 00	5247.15				
		4	Furniture & Fixture	55.66	25.00	80.66				
		5	Any other movable/i mmovable fixed assets	423.85	200.0	623.85				
		Cost of total fixed assets 4,934.50 2,495. 7429.5								
12	Location details of the project	 Longitude: 18024'13.92''N Location: 74031'02.63'' E Elevation above Mean Sea Level (meters): 627.27 Refer Annexure I: Location Plan 								
13	Distance from Protected Areas /			cted Areas / Critica	ally Pollut	ed areas /				

	Critically Polluted areas / Ecosensitive areas / inter-State	within the	ive areas / project site	3					
14	Raw materials (Including process chemicals, catalysts, & additives).	List of raw materials to be used	Physical and chemical nature of raw material		Quantit y (tones/ year) full product ion capacit y	Soi	urce of terials	ms tra po at (So sto ge sit wi	of ons ou e
		Information details	on attached	in A	Annexure	II : R	aw mate	rial	a man man man man man man man man man ma
		By produc	Name of Products, By products & Intermediate Products		Existing (T/Year)		Proposed activity (Expansio n) (T/Year)		al Ye
			Hydroquinone / Catechol / MEHQ / Guaiacol					8,4	00
		Acetopher Methoxy	4-Methoxy Acetophenone / 4- Methoxy Propiophenone				7,900		00
15	Production details	Anisole (I	Hydroxy BHA)	1 1	500 Γ/yr	1,80		1,8	
		Anisole 4-Methyl		10		1,20 100 32		1,2 100 50	
		Zeolite Ca	atalyst cts / Interm	18 redia				JU	
		10 % Phe			500) 1,400		10 0
		(DMC)	carbonate	0		6.	50		65 0
		Acetic Ac		4(00	8:	50		1,2 50
		Total		5,	418	1	11,132		16, 55 0

16	Process details / manufacturing details		ne details of manufacturi exure III	ng process refer					
17	Rain Water Harvesting (RWH)	Leve. Size of 50 Loc build Size pith prov	provided • Budgetary allocation (Capital cost and O&M cost): 15 Lakhs						
18	Total Water Requirement	• Free Kurk Use • Pro • Co • DM • Dr • Gr • Fin required Rem durin	I water requirement: 589 esh water (CMD) & Source tumbh MIDC of the water ocess (CMD): 25 eoling tower & boiler feed M Water (CMD): 20 inking (CMD): 24 een belt (CMD): 20 re service (CMD): Storagized ark: In process Reduction g manufacturing process te Water Quantity as process	ce: 589 CMD from (CMD): 500 e 200 m2 as an wl water will be ge which will be ad	nen nerated				
19	Storm water drainage	• Qu • Siz 300 Nort	tural water drainage patte nantity of storm water: 2' ze of SWD: 18" (450mm) meter Length — South to h East	73.61 CMD OVER Gutter North East and w					
20	Sewage generation and treatment	• Pro	ount of sewage generation oposed treatment for the spacity of the STP (CMD)	ewage : ASP	ombine				
21	Effluent characteristic	Sr.	Parameters (pH, BOD, COD, heavy metal, etc)	Outlet effluent Characteristic	Efflue nt discha rge standa rds (CPC B /MPC B				
		1	рН	7.89	5.5 to 9.0				
		2	TSS (mg/l)	6.0	<200				
		3	TDS (mg/l)	1856	2100				
		4	COD(mg/l)	50	< 250				

		5	BOD(mg/l)		13	< 100				
		6	Oil and grea	se (mg/l)	BDL	< 10				
		7	Sulphates (r	ng/l)	750	< 1000				
		8	Chlorides (n	ng/l)	179	< 600				
		9	Phenols (mg	/l)	BDL	< 5.0				
		10	Free Ammo		0.02	< 5.0				
22	ETP details	Amount of effluent generation (CMD): 1 • Capacity of the ETP (CMD): ETP with Aerobic Treatment system: 57 ETP with Anaerobic Treatment System: • Amount of treated effluent recycled (C • Amount of water send to the CETP (CMC) ETP technology to be Aerobic: Activated Sludge Process								
23	used	Aero	oic : Activate crobic: Anaer	a Sluage Pi obic dinest	ocess					
24	Disposal of the ETP sludge (If applicable)		Kg/month.	ooie digest	-1					
		Sr. no	Source	Qty. (TPM)	Form (Sludge / Dry / Slurry etc.)	Comp ositio				
		1	Raw water treatment plant	Nil	NA	NA				
The state of the s		2	ETP	5000 kg	Sludge	Chemical sludge with Inorganic and organic form				
		3	Process	1305 Kg/m	Distillation Residue	Chem				
25	Solid Waste Management	4	Spent Catalyst	Nil	Nil	ical Nil				
		5	Others like Battery / e waste	NA	NA	NA				
		• If waste(s) contain any hazardous/toxic substance/radioactive materials or heavy metals then provide quantity, disposal data and proposed precautionary measures. • What are the possibilities of recovery and recycling of wastes? Packaging material & plastic waste of 150-200 Kg/m quantity sale to recycler Empty Drums about 10-15 no/m sold to authorised buyers after detoxification								

		Boiler As Distillatio	h about 1 on Residu	-3 Ton/d	send to brick CHWTSDF/	manufac used as fi	turer uel	
						•		
		Polluta nt	Source of Emis	esion	Emission rate kg/hr)	ation in fl gas	t t	
	Atmospheric Emissions (Flue gas characteristics SPM, SO2, NOx, CO, etc.)	SPM SO2 NOx CO Others	/ Therm (4 Lakh	Boiler-1 (5T/hr) / Thermopack-1 (4 Lakhs Kcal/hr)		0.10 0.04 0.06	7	
		SPM SO2 NOx CO	Boiler - (12MT/		26218	0.09 0.04 0.06	97	
26		SPM SO2 NOx	Thermopack -2 (8 lakhs kcal/hr)		2915	0.01	0.080 0.0123 0.064	
		SPM SO2 NOx CO Others	Proposed new boiler of 12MT/hr		26218	0.09	197	
		SPM SO2 NOx CO Others	Proposed new Thermopack -3 of 10 lakhs kcal/hr		3643	0.1 0.01 0.08		
27	Stack emission Details: (All the stacks attached to Process units, Boilers, captive power plant, D.G. Sets, Incinerator both for existing and proposed activity). Please indicate the specific section to which the stack is attached. e.g.: Process section, D.G. Set, Boiler, Power Plant, incinerator etc. Emission rate (kg/hr.) for	Plant Section & units	Stack No.	Height from ground level (m)	Internal Diameter (Top) (m)	Emissi on Rate (Nm3/ hr)	Tem p. of Exha ust Gase s (0C)	
	each pollutant (SPM, SO2, NOx etc. should be specified	DG set-	S-1	3.5	0.20	411.43		

		DG set-	S-2	5.5	0.3	20 x 2	4	115.72	69
		DG set -3 (propos ed)	S-3	30	0.	15	2	415.72 ·	69
		Boiler- 1 – Thermo pack -1	S-4	25	0.	8		11102	51
The second secon		Boiler -	S-5	30.5	1.	2		26218.3	55
		Boiler- 3 propose	S-6	32	0.	2 x 2		26218.3	32
		Thermo pack -2 & Thermo pack-3 (propos ed)	S-7	30	0	.61		2915.2	51
		Pollutan (SPM, S		Emission Standard Limit	Li	opose mit (i g/m3)		MPCB Consen	t
28	Emission Standard	SPM (mg/Nm	(mg/Nm3) 150 SO2 80		0.	0.43 2.65		Not to exceed 150	
					2.			Not to exceed 160	
AAAAA Maraa Ma		NOx (mg/Nn	•	80		8.16		Not to exceed 35	
		Pollutar	lĺ	Permissib e		opose oncent (in g/m3)	trati	Resulta Concer n (in µ	itratio
				Standard		ŽŤ.	Prop s		
29	Ambient Air Quality Data	SPM		150	5	1.3	0.07	51.3	7
		SO2 (μg/m3)		80	1	9.1	0.08	19.1	8
		NOx (μg/m3)		80	2	0.2	1.85	22.0	5
30	Details of Fuel to be used:	Sr N o		Daily Consump (TPD /KI		Calo Valu (Kca /kg)	als	% Ash	% Sul phu r

		1	Gas	-	_		-	
		2	Naphth		-	-	-	
		3	a HSD	3.36 KLD (stand-by)	10700	0.01	0.2	
		4	Fuel Oil	•	-	-	-	
		5	Coal	80 MTD	5800	5-7	1.5	
		6	Lignite					
		7	Other	-	-	-	-	
	•	۰N		insportation of	fuel to site: Ro	ad Tra	nsport	
31	Energy	• E • P D(roposed p G sets: Jumber an	wer requirement ower requirement d capacity DG	ent: 750KVA sets to be used	i (existi /A and	ng and	
J 1	1.711 € J	proposed): Existing two DG set of 380 KV KVA capacity. Proposed one DG set of 100 Details of the non-conventional renewable proposed to be used: There is no use of no conventional renewable energy						
32	Green Belt Development	o I me	Number ar ore than 450 nos. Number, s be	rea (sq. m.): 8: ad species of tre ize, age and species. ed: No tree cut	ees to be plante	o be cu	t, trees	
		Sr	Exis	ting pollution	control	Prop	osed to	
33	Details of Pollution	nc	Air	em	Mechanical dust collector, single cyclone separator, multiple cyclone separator	NA	stalled	
	Control Systems:	2	Wa	ter	ETP is provided	NA		
		3	Noi	se		NA		
		4	Sol	id Waste	CHWTSDF , Ranjangaon / and non Packaging			

				material sends to recycler, Distillation residue are also used as a fuel				
		• Car	oital cost (With br M cost (With bre	eak up): Rs. 262.00 La ak up): Rs.79.00 Lakh	akhs s			
		Sr. No.	Description	Recurring Cost per annum	Capital Cost			
		1.	Air Pollution Control	5.0	80.0			
	Environmental Management plan Budgetary Allocation	2.	Water Pollution Control	50.0	150.0			
		3.	Noise Pollution Control	-	_			
34		4.	Environment monitoring and Management		~			
		5.	Reclamation borrow/mined area (If applicable)	-	-			
		6.	Occupational Health	4.0	10			
		7.	Green Belt	8.0	20.0			
		8.	Solid waste management	3.0	2.0			
		9.	Rain water harvesting	5	10			
		То	tal	79.0	272.0			
35	EIA Submitted (If yes then submit the salient features)	Yes. EIA Report submitted on 23.04.2015 Period of data collected: Dec.2014 to Feb.2015 • Details of the primary data collection (i.e. location of the sample collection, number of visit, etc): AAQM- 7 Location Ground Water: 6 Location Soil Sampling: 7 Location Noise Level: 8 Location Ecology & Biodiversity: 50 Quadrates in 10 Km Radius study area • Details of the secondary data collection (i.e. Source and year of data): Primary Census Abstract-2011						

					Hazardous has been identified during baseline environmental study and assessment. Mitigation measures were suggested. Conclusion of the EIA study: Project has created direct & indirect employment opportunities to the people residing at surrounding region. The management is also trying to recruit the locals by giving them in plant training and making them permanent employee. Different types of people are being recruited based on the qualification as skilled, unskilled or semiskilled. As the project needs good amount of workforce of nontechnical and technical nature, they are being made available from the nearby villages. Migration of highly education and skilled experience is result in increase of literacy in the surrounding villages. Project has also enhanced the prospects of employment to the nearby people. Additional government revenues are generated from taxes, duties and other fees. Additional benefit of the project also includes considerable growth of the industrial and commercial activities in the state.						
36	Air polluti pollution i project are	ssues in			No						
38	Storage of	`chemica	ls (inflamr	nabl	e/explosive/hazardo	ous/toxic s	ubstances)				
Sr. No	Name	Nos. of storag e	Capacit	Ch	ysical and emical mposition	Consu mption (MT/A)	Maximu m Quantity of storage at any point of time	Source of Supply	Me ans of tran spo rtati on		
1	Acetone	2	16 KL	Fla	lorless, Volatile, mmable liquid, scible with water	682	32 KL	Haresh Petroch em, Mumba i	By Roa d		
2	Anisole (93%) / Anisole	10	30KL x 3 50KL x 3 95KL x 3 800KL x 1	ins noi	lorless liquid, oluble in water, ntoxic	12915 / 12000	1325MT 16KL	Atul Limited , Gujarat , Sky- Petro, Singap ore Sachin	By Roa d / By Sea		

		The state of the s		hydrocarbon, flammable, Colorless, Liquid			Chemic als, Mumba i.	Roa d
4	H2O2 60%	2	30KL & 95KL	Colorless liquid, slightly more viscous than water. Strong oxidizer and used as a bleaching agent & disinfectant.	6816	125MT	Nationa I Peroxid e Ltd., Mumba i	By Roa d
5	Acetic Anhydri de / Propioni c Anhydri de	2	30KL &: 50KL	Colorless liquid that smells strongly of acetic acid, widely used reagent in organic synthesis	3225	80MT	Jubilant Life Science Ltd., Pune. Laxmi Organic s,Maha d.	By Roa d
6	Tertiary Butanol	25 drums	Drums 100 ltrs	Clear liquid (odorless solid, depending on the ambient temp) with a camphor-like odor. Soluble in water and miscible with ethanol and diethyl ether.	810	5MT	Aki Shokai Co. Ltd., Japan.	By Sea
7	Phenol	1	r'ank 10 KL	Colorless liquids or white solids at room temp. More soluble in water than are alcohols and have higher boiling points.	170	10 MT	SI group, Mumba i.	By Roa d
8	p-Cresol	1	Tank 16 KL	Colorless solid fully miscible in ethanol and in diethyl ether	100	16MT	Atul Ltd.	By Roa d
9	Tetra Propyl Ammoni um Hydroxi de	25 drums	Drums 200Ltrs	Colorless liquid, amine -like Odor, Water soluble	33.6	5MT	Delta Fineche m, Nasik	By Roa d
10	Tetra Butyl ortho titanate	5 drums	Drums 200Ltrs	Colorless - light yellow, clear liquid, rapidly hydrolyzed by water	5.7	1MT	Om Titanat es	By Roa d
	Isopropy 1 alcohol (IPA)	5 drums	Drums 200Ltrs	Colorless, flammable chemical compound with a	5.7	IKL	Deepak Nitrite, Mahad	By Roa d

				strong odor. Miscible in water, alcohol, ether and chloroform. Dissolve in ethyl cellulose, polyvinyl butyric, many oils, alkaloids, gums and natural resins.	·		,	
12	Ethyl Silicate	10 drums	Fiber Drums 200Lite	Colorless liquid with a mild, sweet, alcohol-like odor	30.3	2MT	Dr Khan, Chiplun	By Roa d
13	Tetra Ethyl Ammoni um Bromide	80 drums	Fiber Drums 25kgs	Colorless, liquid, alcohol odor, Soluble in alcohol, ether and slightly soluble in benzene	30	2MT	Delta Fineoch em, Nasik	By Roa d

3. The proposal has been considered by SEIAA in its 89th & 95th meetings & decided to accord environmental clearance to the said project under the provisions of Environment Impact Assessment Notification, 2006 subject to implementation of the following terms and conditions:

General Conditions for Pre-construction phase:-

- (i) PP to achieve Zero Liquid Discharge (ZLD) by incorporation appropriate technology at least such time that the CETP is resolved fully and is functioning properly.
- (ii) No additional land shall be used /acquired for any activity of the project without obtaining proper permission.
- (iii) This environmental clearance is issued subject to implementation of online air monitoring facility equipment.
- (iv) For controlling fugitive natural dust, regular sprinkling of water & wind shields at appropriate distances in vulnerable areas of the plant shall be ensured.
- (v) Proper Housekeeping programmers shall be implemented.
- (vi) In the event of the failure of any pollution control system adopted by the unit, the unit shall be immediately put out of operation and shall not be restarted until the desired efficiency has been achieve.
- (vii) A stack of adequate height based on DG set capacity shall be provided for control and dispersion of pollutant from DG set.(If applicable)
- (viii) A detailed scheme for rainwater harvesting shall be prepared and implemented to recharge ground water.
- (ix) Arrangement shall be made that effluent and storm water does not get mixed.
- (x) Periodic monitoring of ground water shall be undertaken and results analyzed to ascertain any change in the quality of water. Results shall be regularly submitted to the Maharashtra Pollution Control Board.
- (xi) Noise level shall be maintained as per standards. For people working in the high noise area, requisite personal protective equipment like earplugs etc. shall be provided.
- (xii) The overall noise levels in and around the plant are shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures, etc. on all sources of noise generation. The ambient noise levels shall

- confirm to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989
- (xiii) Green belt shall be developed & maintained around the plant periphery. Green Belt Development shall be carried out considering CPCB guidelines including selection of plant species and in consultation with the local DFO/ Agriculture Dept.
- (xiv) Adequate safety measures shall be provided to limit the risk zone within the plant boundary, in case of an accident. Leak detection devices shall also be installed at strategic places for early detection and warning.
- (xv) Occupational health surveillance of the workers shall be done on a regular basis and record maintained as per Factories Act.
- (xvi) The company shall make the arrangement for protection of possible fire hazards during manufacturing process in material handling.
- (xvii) The project authorities must strictly comply with the rules and regulations with regard to handling and disposal of hazardous wastes in accordance with the Hazardous Waste (Management and Handling) Rules, 2003 (amended). Authorization from the MPCB shall be obtained for collections/treatment/storage/disposal of hazardous wastes.
- (xviii) The company shall undertake following Waste Minimization Measures:
 - Metering of quantities of active ingredients to minimize waste.
 - Reuse of by- products from the process as raw materials or as raw material substitutes in other process.
 - Maximizing Recoveries.
 - Use of automated material transfer system to minimize spillage.
- (xix) Regular mock drills for the on-site emergency management plan shall be carried out. Implementation of changes / improvements required, if any, in the on-site management plan shall be ensured.
- (XX) A separate environment management cell with qualified staff shall be set up for implementation of the stipulated environmental safeguards.
- (xxi) Separate funds shall be allocated for implementation of environmental protection measures/EMP along with item-wise breaks-up. These cost shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should reported to the MPCB & this department
- (xxii) The project management shall advertise at least in two local newspapers widely circulated in the region around the project, one of which shall be in the marathi language of the local concerned within seven days of issue of this letter, informing that the project has been accorded environmental clearance and copies of clearance letter are available with the Maharashtra Pollution Control Board and may also be seen at Website at http://ec.maharashtra.gov.in
- (xxiii) Project management should submit half yearly compliance reports in respect of the stipulated prior environment clearance terms and conditions in hard & soft copies to the MPCB & this department, on 1st June & 1st December of each calendar year.
- (xxiv) A copy of the clearance letter shall be sent by proponent to the concerned Municipal Corporation and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the website of the Company by the proponent.
- (xxv) The proponent shall upload the status of compliance of the stipulated EC conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; SPM, RSPM, SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral

parameters, indicated for the project shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.

(xxvi) The project proponent shall also submit six monthly reports on the status of compliance of the stipulated EC conditions including results of monitored data (both in hard copies as well as by e-mail) to the respective Regional Office of MoEF, the respective Zonal Office of CPCB and the SPCB.

- (xxvii) The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of EC conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.
- 4. The environmental clearance is being issued without prejudice to the action initiated under EP Act or any court case pending in the court of law and it does not mean that project proponent has not violated any environmental laws in the past and whatever decision under EP Act or of the Hon'ble court will be binding on the project proponent. Hence this clearance does not give immunity to the project proponent in the case filed against him, if any or action initiated under EP Act.
- 5. The Environment department reserves the right to revoke the clearance if conditions stipulated are not implemented to the satisfaction of the department or for that matter, for any other administrative reason.
- 6. Validity of Environment Clearance: The environmental clearance accorded shall be valid for a period of 7 years as per MoEF & CC Notification dated 29th April, 2015 to start of production operations.
- 7. In case of any deviation or alteration in the project proposed from those submitted to this department for clearance, a fresh reference should be made to the department to assess the adequacy of the condition(s) imposed and to incorporate additional environmental protection measures required, if any.
- 8. The above stipulations would be enforced among others under the Water (Prevention and Control of Pollution) Act, 1974, the Air (Prevention and Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986 and rules there under, Hazardous Wastes (Management and Handling) Rules, 1989 and its amendments, the public Liability Insurance Act, 1991 and its amendments.
- 9. Any appeal against this environmental clearance shall lie with the National Green Tribunal (Western Zone Bench, Pune), New Administrative Building, 1st Floor, D-, Wing, Opposite Council Hall, Pune, if preferred, within 30 days as prescribed under Section 16 of the National Green Tribunal Act, 2010.

(S. M Gavai) Member Secretary, SEIAA

Copy to:

- 1. Shri T. C. Benjamin, IAS (Retired), Chairman, SEAC-I, 602, PECAN, Marigold, Behind Gold Adlabs, Kalyani Nagar, Pune 411014.
- 2. Additional Secretary, MoEF & CC, Indira Paryavaran Bhavan, Jorbagh Road, Aliganj, New Delhi-110003.